Prof Simon McIntosh-Smith & Dr Tom Deakin

HPC Research Group University of Bristol

Early SYCL results from the Bristol **Performance Portability Study**

Challenges at Exascale

- The coming generation of Exascale supercomputers will contain a diverse range of architectures at massive scale
 - Perlmutter: AMD EYPC CPUs and NVIDIA GPUs (pre-Exascale)
 - Frontier: AMD EPYC CPUs and Radeon GPUs
 - Aurora: Intel Xeon CPUs and Xe GPUs
 - El Capitan: AMD EPYC CPUs and Radeon GPUs
 - Fugaku: Fujitsu A64fx Arm CPUs

Recent architectural trends

- CPUs have evolved to include lots of cores and wide vector units
- 32 core CPUs been around for a while (AMD Naples, Marvell ThunderX2)
- 48, 64 core CPUs have now arrived (A64FX, Rome)
- Chiplet manufacturing processes likely to be an important future trend
- Renewed competition in CPUs is crucial to the health of the HPC ecosystem, and for performance per dollar

- GPUs incorporating latest memory technologies (HBM)
 - So does A64FX CPUs (and so did KNL)
- GPUs have lots of cores and very wide vector units
- Lightweight cores becoming more complex (caches, specialised accelerators, etc)
- Vendor competition increasing (AMD GPUs in Frontier and El Capitan, Intel GPUs in Aurora, NVIDIA GPUs in pre-Exascale Perlmutter)

What do we mean by "performance portability?"

"A code is performance portable if it can achieve a similar fraction of peak hardware performance on a range of different target architectures."

Questions:

- Does it have to be a "good" fraction? YES! Ideally within 20% of "best achievable", i.e. of hand-optimized OpenMP, CUDA, ...
- How wide is the range of target architectures? Depends on your goal, but important to allow for future architectural developments

A systematic evaluation of Performance Portability

- Studying Performance Portability is hard!
 - Must be **rigorous** about doing as well as possible across a wide range issues: architectures, programming languages, algorithms, compilers, ...
- It takes a lot of effort to do this well
- Motivated by our results so far, in Bristol we have initiated a wideranging evaluation of Performance Portability:
 - Across many codes
 - Across many programming languages
 - Across many architectures
- Our goal is to share these codes and results to further the fundamental understanding of performance portability

TeaLeaf

	Lower is better						
Skylake	317	370	-				
KNL	191	885	-				
Power 9	254	393	-	341 -			
Naples	348	372	-				
ThunderX2	314	439	-				
Ampere	793	892	-				
NEC Aurora	79.1	-	-				
K20	1605	712	445	629 -			
P100	190	187	122	153 -			
V100	281	127	81.0	103			
Turing	962	181	116	139 -			
•	OpenMP	Kokkos	CUDA	OpenACC			

CloverLeaf

	Lower is better							
Skylake	- 376	463	-	877				
KNL	- 250	666	-	698				
Power 9	- 376	544	-	768				
Naples	- 327	395	-	337				
ThunderX2	- 457	772	-	-				
Ampere	1309	1452	-	-				
NEC Aurora	- 323	-	-	-				
K20	9737	1297	592	-	572 -			
P100	- 226	163	139	133	149 -			
V100		108	88.8	90.1	97.9			
Turing		211	213	199	213 -			
Radeon VII	- :			-	106 -			
	OpenMP	Kokkos	CUDA	OpenACC	OpenCL			

Higher is better								
Skylake	80.2%	68.1%	-	32.4%	41.8%			
KNL	92.2%	62.1%	-	90.7%	58.4% -			
Power 9	- 72.8%	73.6%	-	72.5%				
Naples	- 65.9%	62.7%	-	-				
ThunderX2	85.3%	84.7%	-	-				
Ampere	- 66.4%	57.3%	-	-				
NEC Aurora	81.3%	-	-	-				
K20	- 69.2%	72.9%	72.3%	-	72.8% -			
P100	- 75.5%	76.1%	75.4%	75.3%	75.3% -			
V100	86.0%	92.0%	92.6%	92.1%	93.2% -			
Turing	85.7%	90.0%	90.2%	90.1%	89.9% -			
Dodoon VIII					70.401			

MiniFMM

Neutral

		Lower is better								
Skylake	8.7	12.9	-							
KNL	11.4	20.2	-							
Power 9	23.6	38.5	-							
Naples	13.1	20.5	-							
ThunderX2	21.9	30.6	-							
Ampere	116	127	-							
K20	56.7	28.2	17.3							
P100	5.0	4.7	3.5	4.3						
V100	3.1	4.4	2.5	3.8 -						
Turing	3.2	4.2	2.3	3.2						
•	OpenMP	Kokkos	CUDA	OpenACC						

https://doi.org/10.1109/P3HPC49587.2019.00006

http://uob-hpc.github.io http://hpc.tomdeakin.com

BabelStream

Performance Portability of OpenMP and Kokkos

- Heatmap shows PP metric on chosen platform subsets
- Rows indicate how a model fairs across different applications
- OpenMP achieving best performance on CPUs but struggles on GPUs due to support
- Kokkos shows a small overhead on **CPUs**
 - PP metric tells us to expect the abstraction of OpenMP/CUDA to reduce performance by ~15-50%

Higher is better						Mean	Std. Dev.
OpenMP CPU	98.4%	100.0%	100.0%	100.0%	100.0% -	99.7	0.6
Kokkos CPU	83.0%	49.8%	60.7%	77.6%	66.1%	67.5	11.9
OpenMP GPU	95.5%	22.5%	0.0%	0.0%	0.0%	23.6	37.0
Kokkos GPU	99.5%	64.3%	85.7%	51.1%	60.4%	72.2	17.7
OpenMP all	97.3%	43.6%	0.0%	0.0%	0.0%	28.2	38.5
Kokkos all	- 88.5%	54.4%	68.2%	65.0%	63.9%	68.0	11.2

 Final row here (Kokkos all) shows performance portability is possible

BabelStream TeaLeaf CloverLeaf Neutral MiniFMM

Mean and standard deviation shows we would expect Kokkos to achieve 59-79% of best application performance on average

http://uob-hpc.github.io http://hpc.tomdeakin.com

https://doi.org/10.1109/P3HPC49587.2019.00006

SYCL

- SYCL is a single-source C++ parallel programming model for heterogenous platforms from Khronos
 - Open standard
 - Modern C++
 - Commercial support from Intel with oneAPI/DPC++ and Codeplay
 - Open-source support growing to support wider set of platforms
- One possible option for programming CPUs, GPUs, etc. in a performance portable way

Performance Portability of SYCL

- Paper at IWOCL explored performance on Intel CPUs and GPUs from Intel, AMD and NVIDIA.
 - Comparisons with OpenCL, OpenMP, **CUDA** and HIP
 - Very promising results so far, but more work to do in the HPC ecosystem
 - Intel's OpenCL runtime on CPUs has known issues which hopefully will improve as part of oneAPI

BabelStream Triad

Arm Mali

IMG PowerVR

Renesas R-Car

Multiple Backends in Development

SYCL beginning to be supported on multiple low-level APIs in addition to OpenCL e.g. ROCm and CUDA

For more information: http://sycl.tech

Latest BabelStream results

BabelStream Triad array_size=2**25 96.8 % complete (discounting impossible spaces)

		70.0 % COIII	ipiete (discou	mung miposs	ioic spaces)	
Cascade Lake	72.0%	57.9%	24.3%	X	34.8%	35.5% -
Skylake	82.5%	70.5%	27.6%	X	44.2%	43.0% -
Knights Landing	91.5%	64.3%	65.7%	X	58.5%	53.7% -
Rome	74.5%	117.5%	39.5%	X	15.8%	70.1% -
Power 9	66.0%	70.9%	46.5%	X	X	59.0% -
ThunderX2	79.6%	78.6%	X	X	32.5%	75.3% -
Graviton 2	84.2%	82.5%	X	X	_	26.5% -
P100	75.4%	76.3%	75.3%	75.3%	75.5%	71.9% -
V100	87.6%	92.3%	92.2%	93.0%	X	86.0% -
Turing	32.3%	90.0%	90.1%	90.2%	89.9%	86.0% -
Radeon VII	48.8%	78.1%	9.9%	X	82.1%	80.8% -
MI50	71.2%	69.1%	-	X	76.0%	Е -
IrisPro Gen9	78.6%	X	X	X	80.1%	80.5% -
	1		1			
	NP.	1,08			a.	-(1)

OpenMP Kokkos OpenACC CUDA OpenCL SYCL

- Showing architectural efficiency
 - Percentage of peak memory bandwidth
- Latest and greatest
 CPUs and GPUs from all vendors
- (Near) complete coverage for OpenMP, Kokkos and SYCL!
 - Much better coverage than our previous study

Performance portability of BabelStream

- Using Performance Portability metric (from Pennycook/Sewall/Lee), Kokkos and SYCL still score 0 due to single missing result.
- Two approaches to work around this (both have similar effect):
 - Calculate metric excluding the missing result.
 - Remove unsupported platforms.

PP metric	OpenMP	Kokkos	SYCL
All platforms	67.4	0.0	0.0
Excluding missing data in each model	67.4	76.5	56.0
Excluding MI50 and Iris Pro 580 for all models	66.2	77.3	54.5

	BabelStream Triad array_size=2**25 96.8 % complete (discounting impossible spaces)							
Cascade Lake	72.0%	57.9%	24.3%	X	34.8%	35.5% -		
Skylake	82.5%	70.5%	27.6%	X	44.2%	43.0% -		
Knights Landing	91.5%	64.3%	65.7%	X	58.5%	53.7% -		
Rome	- 74.5%	117.5%	39.5%	X	15.8%	70.1% -		
Power 9	66.0%	70.9%	46.5%	X	X	59.0% -		
ThunderX2	- 79.6%	78.6%	X	X	32.5%	75.3% -		
Graviton 2	84.2%	82.5%	X	X	-	26.5% -		
P100	75.4%	76.3%	75.3%	75.3%	75.5%	71.9% -		
V100	87.6%	92.3%	92.2%	93.0%	X	86.0% -		
Turing	- 32.3%	90.0%	90.1%	90.2%	89.9%	86.0% -		
Radeon VII	48.8%	78.1%	9.9%	X	82.1%	80.8% -		
MI50	- 71.2%	69.1%	-	X	76.0%	Е -		
IrisPro Gen9	- 78.6%	X	X	X	80.1%	80.5% -		
		1						
	OpenMP	Kokkos	Open ACC	CUDA	OpenCL	SYCL		

Performance portability of BabelStream on CPUs and GPUs

- Compute the metric for each model (where we have results) on CPUs only and GPUs only.
- Kokkos still strong on both classes of device.
- OpenMP GPU support better but still room for improvement.
- SYCL support on CPUs needs improvement to resolve:
 - NUMA and thread placement issues of OpenCL backends.
 - Parallelism mapping of OpenMP backends.

PP metric	OpenMP	Kokkos	SYCL
Excluding missing data in each model	67.4	76.5	56.0
Supported CPUs only	77.8	74.1	46.0
Supported GPUs only	58.3	80.2	80.7

BabelStream Triad array_size=2**25 96.8 % complete (discounting impossible spaces)								
Cascade Lake	- 72.0%	57.9%	24.3%	X	34.8%	35.5% -		
Skylake	82.5%	70.5%	27.6%	X	44.2%	43.0% -		
Knights Landing	91.5%	64.3%	65.7%	X	58.5%	53.7% -		
Rome	- 74.5%	117.5%	39.5%	X	15.8%	70.1% -		
Power 9	66.0%	70.9%	46.5%	X	X	59.0% -		
ThunderX2	- 79.6%	78.6%	X	X	32.5%	75.3% -		
Graviton 2	84.2%	82.5%	X	X	-	26.5% -		
P100	75.4%	76.3%	75.3%	75.3%	75.5%	71.9% -		
V100	87.6%	92.3%	92.2%	93.0%	X	86.0% -		
Turing	- 32.3%	90.0%	90.1%	90.2%	89.9%	86.0% -		
Radeon VII	- 48.8%	78.1%	9.9%	X	82.1%	80.8% -		
MI50	- 71.2%	69.1%	-	X	76.0%	Е -		
IrisPro Gen9	- 78.6%	X	X	X	80.1%	80.5% -		
			1					
	MP	Lakkos	NCC C	Agus	anCL	NCL		

Summary

- SYCL's future is looking bright:
 - Early view of SYCL-2020 shows lots of new HPC-friendly features
 - https://www.iwocl.org/iwocl-2020/conference-program/#panel
 - Support for NVIDIA GPUs added to open-source version of DPC++
 - Critical part of Argonne National Laboratory path to Exascale with Aurora
 - Robust support from/for Arm and AMD the next step
 - Improvements on Intel CPUs needed to help performance
- OpenMP GPU support growing:
 - Improvements to LLVM and GCC
 - Support for Intel GPUs available in Intel oneAPI compiler
- Kokkos continues to provide pragmatic isolation from underlying vendor support decisions:
 - But must wait for Kokkos team or contributors to provide new backends
 - Not open standard so has a high cost of ownership and little shared infrastructure (like LLVM community)

- What programming model should I use?
 http://uob-hpc.github.io/2020/05/05/choosing-models.html
- Performance Portability across Diverse Computer Architectures
 T. Deakin, S. McIntosh-Smith, J. Price, A. Poenaru, P. Atkinson, C. Popa, J. Salmon, P3HPC at SC 2019.
 https://doi.org/10.1109/P3HPC49587.2019.00006
- Evaluating the performance of HPC-style SYCL applications T. Deakin, S. McIntosh-Smith, IWOCL 2019. https://doi.org/10.1145/3388333.3388643
- Evaluating attainable memory bandwidth of parallel programming models via BabelStream T. Deakin, J. Price, M. Martineau, S. McIntosh-Smith, IJCSE 2018. https://doi.org/10.1504/IJCSE.2017.10011352

Plus others at uob-hpc.github.io/ and hpc.github.io/ and hpc.github.io/ SimonMS/

Twitter: @tjdeakin @simonmcs

